
EUROPEAN COMMITTEE FOR STANDARDIZATION
C OM ITÉ EUR OP ÉEN DE NOR M ALIS AT ION
EUROPÄISCHES KOMITEE FÜR NORMUNG

Central Secretariat: rue de Stassart, 36 B-1050 Brussels

© 1998 CEN All rights of exploitation in any form and by any means reserved
worldwide for CEN national Members.

Ref. No. CWA 13449-4:1998 E

CEN

WORKSHOP

AGREEMENT

CWA 13449-4

December 1998

ICS 35.200;35.240.15

English version

Extensions for Financial Services (XFS) interface specification -
Part 4: Identification Card Device Class Interface -

Programmer’s Interface

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of
which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National
Members of CEN but neither the National Members of CEN nor the CEN Central Secretariat can be held accountable for the technical
content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN Members are the National Standards Bodies of Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece,
Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and United Kingdom.

Page 2
CWA 13449-4:1998

Contents

Foreword... .3

0. Introduction ...4

1. XFS Service-Specific Programming ..5

2. Identification Card Readers and Writers ...5

3. Info Commands ...6

3.1 WFS_INF_IDC_STATUS... 6

3.2 WFS_INF_IDC_CAPABILITIES .. 8

3.3 WFS_INF_IDC_FORM_LIST .. 9

3.4 WFS_INF_IDC_QUERY_FORM ... 10

4. Execute Commands ..11

4.1 WFS_CMD_IDC_READ_TRACK.. 11

4.2 WFS_CMD_IDC_WRITE_TRACK .. 12

4.3 WFS_CMD_IDC_EJECT_CARD... 13

4.4 WFS_CMD_IDC_RETAIN_CARD... 14

4.5 WFS_CMD_IDC_RESET_COUNT.. 14

4.6 WFS_CMD_IDC_SETKEY .. 15

4.7 WFS_CMD_IDC_READ_RAW_DATA.. 15

4.8 WFS_CMD_IDC_WRITE_RAW_DATA .. 17

4.9 WFS_CMD_IDC_CHIP_IO .. 18

5. Events ..19

5.1 WFS_EXEE_IDC_INVALIDTRACKDATA... 19

5.2 WFS_EXEE_IDC_MEDIAINSERTED ... 19

5.3 WFS_SRVE_IDC_MEDIAREMOVED ... 19

5.4 WFS_EXEE_IDC_INVALIDMEDIA ... 20

5.5 WFS_SRVE_IDC_CARDACTION... 20

5.6 WFS_USRE_IDC_RETAINBINTHRESHOLD... 20

6. Form Description...20

7. C-Header file ..22

Page 3
CWA 13449-4:1998

Foreword

This CWA is revision 2.0 of the XFS interface specification. Release 2.0 extends the scope of the XFS interface
specification to include both the self service/ATM environment as well as the branch environment. The new
specification now fully supports cameras, deposit units, identification cards, PIN pads, sensors and indicator units,
text terminals, cash dispenser modules and a wide variety of printing mechanisms.

This specification was originally developed by the Banking Solutions Vendor Council (BSVC), and is endorsed by
the CEN/ISSS Workshop on XFS. This Workshop gathers both suppliers (among others the BSVC members) as
well as banks and other financial service companies. A list of companies participating in this Workshop and in
support of this CWA is available from the CEN/ISSS Secretariat.

The specification is continuously reviewed and commented in the CEN/ISSS Workshop on XFS. It is therefore
expected that an update of the specification will be published in due time as a CWA, superseding this revision 2.00.

This CWA is supplemented by a set of release notes, which are available from the CEN/ISSS Secretariat (an on-line
version of these release notes is available from http://www.cenorm.be/isss/Workshop/XFS/release-notes.htm).

Page 4
CWA 13449-4:1998

0. Introduction

This is part 4 of the multi-part CWA 13449, describing Release 2.0 of the XFS interface specification.

The full CWA 13449 "Extensions for Financial Services (XFS) interface specification"consists of the
following parts:

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI); Programmer's
Reference
Part 2: Service Classes Definition; Programmer's Reference
Part 3: Printer Device Class Interface - Programmer's Reference
Part 4: Identification Card Device Class Interface - Programmer's Reference
Part 5: Cash Dispenser Device Class Interface - Programmer's Reference
Part 6: PIN Keypad Device Class Interface - Programmer's Reference
Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference
Part 8: Depository Device Class Interface - Programmer's Reference
Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference
Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference
Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference
Part 12: Camera Device Class Interface - Programmer's Reference

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a
complementary document, called Release Notes. The Release Notes contain clarifications and
explanations on the CWA specifications, which are not requiring functional changes. The current version
of the Release Notes is available from the CEN/ISSS Secretariat (contact isss@cenorm.be or download
from http://www.cenorm.be/isss/ Workshop/XFS/release-notes.htm).

The information in this document originally contributed by members of the Banking Solutions Vendor
Council and endorsed by the CEN/ISSS Workshop on XFS, represents the Workshop's current views on
the issues discussed as of the date of publication. It is furnished for informational purposes only and is
subject to change without notice. CEN/ISSS makes no warranty, express or implied, with respect to this
document.

The XFS specifications are now further developed in the CEN/ISSS Workshop on XFS. CEN/ISSS
Workshops are open to all interested parties offering to contribute. Parties interested in participating
should contact the CEN/ISSS Secretariat (isss@cenorm.be).

A Software Development Kit (SDK) which supplies the components and tools to allow the
implementation of compliant applications and services is available from Microsoft1.

To the extent that date processing occurs, all XFS Workshop participants agree that the XFS
specifications are Year 2000 compliant.

Revision History:
1.0 May 24, 1993 Initial release of API and SPI specification
1.11 February 3, 1995 Separation of specification into separate documents for API/SPI and

service class definitions, with updates
2.00 November 11, 1996 Updated release encompassing self-service environment.

October 6, 1998 WOSA/XFS Release 2.00 as originally developed by the BSVC, has been
formally accepted as a CEN Workshop Agreement by the
CEN/ISSS XFS Workshop and the name WOSA/XFS has been changed
into XFS. In spite of the name change, certain occurrencies of
WOSA/XFS however still appear in the documentation, for compatibility
reasons

1 Microsoft is a registered trademark, and Windows and Windows NT are trademarks of Microsoft Corporation

Page 5
CWA 13449-4:1998

1. XFS Service-Specific Programming

The service classes are defined by their service-specific commands and the associated data structures, error codes,
messages, etc. These commands are used to request functions that are specific to one or more classes of service
providers, but not all of them, and therefore are not included in the common API for basic or administration
functions.

When a service-specific command is common among two or more classes of service providers, the syntax of the
command is as similar as possible across all services, since a major objective of the Extensions for Financial
Services specification is to standardize command codes and structures for the broadest variety of services. For
example, using the WFSExecute function, the commands to read data from various services are as similar as
possible to each other in their syntax and data structures.

In general, the specific command set for a service class is defined as the union of the specific capabilities likely to be
provided by the developers of the services of that class; thus any particular device will normally support only a
subset of the defined command set.

There are three cases in which a service provider may receive a service-specific command that it does not support:

� The requested capability is defined for the class of service providers by the XFS specification, the particular
vendor implementation of that service does not support it, and the unsupported capability is not considered to
be fundamental to the service. In this case, the service provider returns a successful completion, but does no
operation. An example would be a request from an application to turn on a control indicator on a passbook
printer; the service provider recognizes the command, but since the passbook printer it is managing does not
include that indicator, the service provider does no operation and returns a successful completion to the
application.

� The requested capability is defined for the class of service providers by the XFS specification, the particular
vendor implementation of that service does not support it, and the unsupported capability is considered to be
fundamental to the service. In this case, a WFS_ERR_UNSUPP_COMMAND error is returned to the calling
application. An example would be a request from an application to a cash dispenser to dispense coins; the
service provider recognizes the command but, since the cash dispenser it is managing dispenses only notes,
returns this error.

� The requested capability is not defined for the class of service providers by the XFS specification. In this case,
a WFS_ERR_INVALID_COMMAND error is returned to the calling application.

This design allows implementation of applications that can be used with a range of services that provide differing
subsets of the functionalities that are defined for their service class. Applications may use the WFSGetInfo and
WFSAsyncGetInfo commands to inquire about the capabilities of the service they are about to use, and modify
their behavior accordingly, or they may use functions and then deal with WFS_ERR_UNSUPP_COMMAND error
returns to make decisions as to how to use the service.

2. Identification Card Readers and Writers

This section describes the functions provided by a generic identification card reader/writer service (IDC). These
descriptions include definitions of the service-specific commands that can be issued, using the WFSAsyncExecute,
WFSExecute, WFSGetInfo and WFSAsyncGetInfo functions.

This service allows for the operation of the following categories of units:
� motor driven card reader/writer
� pull through card reader (writing facilities only partially included)
� dip reader
� contactless chip card readers

 The following tracks/chips and the corresponding international standards are taken into account in this document:

 Track 1 ISO 7811

 Track 2 ISO 7811

Page 6
CWA 13449-4:1998

 Track 3 ISO 7811 / ISO 4909

 Chip (contacted) ISO 7816

 Chip (contactless) ISO 10536.

 National standards like Transac for France or Watermark for Sweden are not considered, but can be easily included
via the forms mechanism (see Section 6, Form Definition).

 In addition to the pure reading of the tracks mentioned above, security boxes can be used via this service to check
the data of writable tracks for manipulation. These boxes (such as CIM or MM) are sensor-equipped devices that are
able to check some other information on the card and compare it with the track data.

 3. Info Commands

 3.1 WFS_INF_IDC_STATUS

 Description This command reports the full range of information available, including the information that is
provided either by the service provider or, if present, by any of the security modules. In addition
to that, the number of cards retained is transmitted for motor driven card reader/writer (for devices
of the other categories this number is always set to zero).

 Input Param None.

 Output Param LPWFSIDCSTATUS lpStatus ;

 typedef struct _wfs_idc_status
{
WORD fwDevice;
WORD fwMedia;
WORD fwRetainBin;
WORD fwSecurity;
USHORT usCards;
LPSTR lpszExtra;
} WFSIDCSTATUS, * LPWFSIDCSTATUS;

 fwDevice
Specifies the state of the ID card device as one of the following flags:

 Value Meaning
 WFS_IDC_DEVONLINE The device is present, powered on and online (i.e.,

operational, not busy processing a request and not in an
error state).

 WFS_IDC_DEVOFFLINE The device is present and powered on, but offline (not
operational–e.g., an operator has switched it offline).

 WFS_IDC_DEVPOWEROFF The device is present but powered off.
 WFS_IDC_DEVBUSY The device is present and is busy processing an

Execute request.
 WFS_IDC_DEVNODEVICE There is no device connected.
 WFS_IDC_DEVUSERERROR The device is present but a person is preventing proper

device operation. The application should suspend the
device operation or remove the device from service
until the service provider generates a device state
change event indicating the condition of the device has
changed e.g.the error is removed
(WFS_IDC_DEVONLINE) or a permanent error
condition has occurred (WFS_IDC_DEVHWERROR).

 WFS_IDC_DEVHWERROR The device is present but inoperable due to a hardware
fault that prevents it from being used.

Page 7
CWA 13449-4:1998

 fwMedia
Specifies the state of the ID card unit as one of the following flags:

 Value Meaning
 WFS_IDC_MEDIAPRESENT Media is present in the device, not in the entering

position and not jammed.
 WFS_IDC_MEDIANOTPRESENT Media is not present in the device and not at the

entering position.
 WFS_IDC_MEDIAJAMMED Media is jammed in the device; operator intervention is

required.
 WFS_IDC_MEDIANOTSUPP Capability to report media position is not supported by

the device (e.g., a typical swipe reader).
 WFS_IDC_MEDIAUNKNOWN The media state cannot be determined with the device

in its current state (e.g., the value of fwDevice is
WFS_IDC_DEVNODEVICE,
WFS_IDC_DEVPOWEROFF,
WFS_IDC_DEVOFFLINE, or
WFS_IDC_DEVHWERROR).

 WFS_IDC_MEDIAENTERING Media is at the entry/exit slot of a motorized device.

 fwRetainBin
Specifies the state of the ID card unit retain bin as one of the following flags:

 Value Meaning
 WFS_IDC_RETAINBINOK The retain bin of the ID card unit is not full.
 WFS_IDC_RETAINBINFULL The retain bin of the ID card unit is full.
 WFS_IDC_RETAINBINHIGH The retain bin of the ID card unit is nearly full.
 WFS_IDC_RETAINNOTSUPP The ID card unit does not support retain capability.

 fwSecurity
Specifies the state of the security unit as one of the following flags:

 Value Meaning
 WFS_IDC_SECOPEN The security module is open and ready to process

cards.
 WFS_IDC_SECNOTREADY The security module is not ready to process cards.
 WFS_IDC_SECNOTSUPP No security module is available.

 usCards
The number of cards retained; applicable only to motor driven ID card units. This value is
persistent (i.e., it survives power failures, opens, and closes): it is reset to zero by the
WFS_CMS_IDC_RESET_COUNT command.

 lpszExtra
Points to a list of vendor-specific, or any other extended, information. The information is
returned as a series of "key=value" strings so that it is easily extensible by service providers.
Each string is null-terminated, with the final string terminating with two null characters.

 Error Codes There are no additional error codes generated by this command.

 Comments Applications which require or expect specific information to be present in the lpszExtra parameter
may not be device or vendor-independent.

Page 8
CWA 13449-4:1998

 3.2 WFS_INF_IDC_CAPABILITIES

 Description This command is used to retrieve the capabilities of the ID card unit.

 Input Param None.

 Output Param LPWFSIDCCAPS lpCaps;

 typedef struct _wfs_idc_caps
{
WORD wClass;
WORD fwType;
BOOL bCompound;
WORD fwReadTracks;
WORD fwWriteTracks;
WORD fwChipProtocols;
USHORT usCards;
WORD fwSecType;
WORD fwPowerOnOption;
WORD fwPowerOffOption;
LPSTR lpszExtra;
} WFSIDCCAPS, * LPWFSIDCCAPS;

 wClass
Specifies the logical service class; value is WFS_SERVICE_CLASS_IDC

 fwType
Specifies the type of the ID card unit as one of the following flags:

 Value Meaning
 WFS_IDC_TYPEMOTOR The ID card unit is a motor driven card unit.
 WFS_IDC_TYPESWIPE The ID card unit is a swipe (pull-through) card unit .
 WFS_IDC_TYPEDIP The ID card unit is a dip card unit.
 WFS_IDC_TYPECONTACTLESS The ID card unit is a contactless card unit, i.e. no

insertion of the card is required.

 bCompound
Specifies whether the logical device is part of a compound physical device and is either TRUE
or FALSE.

 fwReadTracks
Specifies the tracks that can be read by the ID card unit as a combination of the following flags:

 Value Meaning
 WFS_IDC_NOTSUPP The ID card unit can not access any track.
 WFS_IDC_TRACK1 The ID card unit can access track 1.
 WFS_IDC_TRACK2 The ID card unit can access track 2.
 WFS_IDC_TRACK3 The ID card unit can access track 3.

 fwWriteTracks
Specifies the tracks that can be written by the ID card unit (as a combination of the flags
specified in the description of fwReadTracks).

 fwChipProtocols
Specifies the chip card protocols that are supported by the service provider as a combination of
the following flags:

 Value Meaning
 WFS_IDC_NOTSUPP The ID card unit can not handle chip cards.
 WFS_IDC_CHIPT0 The ID card unit can handle the T=0 protocol.
 WFS_IDC_CHIPT1 The ID card unit can handle the T=1 protocol.
 WFS_IDC_CHIPT2 The ID card unit can handle the T=2 protocol.
 WFS_IDC_CHIPT3 The ID card unit can handle the T=3 protocol.
 WFS_IDC_CHIPT4 The ID card unit can handle the T=4 protocol.
 WFS_IDC_CHIPT5 The ID card unit can handle the T=5 protocol.
 WFS_IDC_CHIPT6 The ID card unit can handle the T=6 protocol.
 WFS_IDC_CHIPT7 The ID card unit can handle the T=7 protocol.

Page 9
CWA 13449-4:1998

 WFS_IDC_CHIPT8 The ID card unit can handle the T=8 protocol.
 WFS_IDC_CHIPT9 The ID card unit can handle the T=9 protocol.
 WFS_IDC_CHIPT10 The ID card unit can handle the T=10 protocol.
 WFS_IDC_CHIPT11 The ID card unit can handle the T=11 protocol.
 WFS_IDC_CHIPT12 The ID card unit can handle the T=12 protocol.
 WFS_IDC_CHIPT13 The ID card unit can handle the T=13 protocol.
 WFS_IDC_CHIPT14 The ID card unit can handle the T=14 protocol.
 WFS_IDC_CHIPT15 The ID card unit can handle the T=15 protocol.

 usCards
Specifies the maximum numbers of cards that the retain bin can hold (zero if not available).

 fwSecType
Specifies the type of security module used as one of the following flags:

 Value Meaning
 WFS_IDC_SECNOTSUPP Device has no security module.
 WFS_IDC_SECMMBOX Security module of device is MMBox.
 WFS_IDC_SECCIM86 Security module of device is CIM86.

 fwPowerOnOption
Specifies the power-on capabilities of the device hardware, as one of the following flags;
applicable only to motor driven ID card units.

 Value Meaning
 WFS_IDC_NOACTION No power on actions are supported by the device
 WFS_IDC_EJECT The card will be ejected on power-on (or off, see

fwPowerOffOption below).
 WFS_IDC_RETAIN The card will be retained on power-on (off).
 WFS_IDC_EJECTTHENRETAIN The card will be ejected for a specified time on

power-on (off), then retained if not taken. The time
for which the card is ejected is vendor dependent.

 WFS_IDC_READPOSITION The card will be moved into the read position on
power-on (off).

 fwPowerOffOption
Specifies the power-off capabilities of the device hardware, as one of the flags specified for
fwPowerOnOption; applicable only to motor driven ID card units.

 lpszExtra
Points to a list of vendor-specific, or any other extended information. The information is
returned as a series of "key=value" strings so that it is easily extensible by service providers.
Each string is null-terminated, with the final string terminating with two null characters.

 Error Codes There are no additional error codes generated by this command.

 Comments Applications which require or expect specific information to be present in the lpszExtra parameter
may not be device or vendor-independent.

 3.3 WFS_INF_IDC_FORM_LIST

 Description This command is used to retrieve the list of forms available on the device.

 Input Param None.

 Output Param LPSTR lpszFormList ;

 lpszFormList
Pointer to a list of null-terminated form names, with the final name terminating with two null
characters.

 Error Codes There are no additional error codes generated by this command.

 Comments None.

Page 10
CWA 13449-4:1998

 3.4 WFS_INF_IDC_QUERY_FORM

 Description This command is used to retrieve details of the definition of a specified form.

 Input Param LPSTR lpszFormName ;

 lpszFormName
Points to the null-terminated form name on which to retrieve details.

 Output Param LPWFSIDCFORM lpForm;

 typedef struct _wfs_idc_form
{
LPSTR lpszFormName;
char cFieldSeparatorTrack1;
char cFieldSeparatorTrack2;
char cFieldSeparatorTrack3;
WORD fwAction;
LPSTR lpszTracks;
BOOL bSecure;
LPSTR lpszTrack1Fields;
LPSTR lpszTrack2Fields;
LPSTR lpszTrack3Fields;
} WFSIDCFORM, * LPWFSIDCFORM;

 lpszFormName
Specifies the null-terminated name of the form.

 cFieldSeparatorTrack1
Specifies the value of the field separator of Track 1.

 cFieldSeparatorTrack2
Specifies the value of the field separator of Track 2.

 cFieldSeparatorTrack3
Specifies the value of the field separator of Track 3.

 fwAction
is a flag word that specifies the form action; can be one of the following:

 Value Meaning
 WFS_IDC_ACTIONREAD The form reads the card.
 WFS_IDC_ACTIONWRITE The form writes the card.

 lpszTracks
Specifies the read algorithm or the track to write.

 bSecure
Specifies whether or not to do a security check.

 lpszTrack1Fields
Pointer to a list of null-terminated field names of Track 1, with the final name terminating with
two null characters.

 lpszTrack2Fields
Pointer to a list of null-terminated field names of Track 2, with the final name terminating with
two null characters.

 lpszTrack3Fields
Pointer to a list of null-terminated field names of Track 3, with the final name terminating with
two null characters.

 Error Codes The following additional error codes can be generated by this command:
 Value Meaning
 WFS_ERR_IDC_FORMNOTFOUND The specified form cannot be found.

Page 11
CWA 13449-4:1998

 WFS_ERR_IDC_FORMINVALID The specified form is invalid.

 Comments None.

 4. Execute Commands

 4.1 WFS_CMD_IDC_READ_TRACK

 Description For motor driven card readers, the ID card unit checks whether a card has been inserted. If so, the
tracks are read immediately as described in the form specified by the lpFormsName parameter.

 If no card has been inserted, and for all other categories of card readers, the ID card unit waits for
the period of time specified in the WFSExecute call for a card to be either inserted or pulled
through. Again the next step is reading the tracks specified in the form (see Section 6, Form
Definition, for a more detailed description of the forms mechanism). In addition to that, the results
of a security check via a security module (i.e., MM, CIM86) are specified and added to the track
data.

 Input Param LPSTR lpstrFormName ;

 lpstrFormName
Points to the name of the form that defines the behavior for the reading of tracks (see Section 6,
Form Definition)

 Output Param LPSTR lpstrTrackData ;

 lpstrTrackData
Points to the data read successfully from the selected tracks (and value of security module if
available).

 Error Codes The following additional error codes can be generated by this command:
 Value Meaning
 WFS_ERR_IDC_MEDIAJAM The card is jammed. Operator intervention is required.
 WFS_ERR_IDC_SHUTTERFAIL The open of the shutter failed due to manipulation or

hardware error. Operator intervention is required
 WFS_ERR_IDC_INVALIDDATA The read operation specified by the forms definition

could not be completed successfully due to invalid
track data. This is returned if all tracks in an ‘or’ (|)
operation cannot be read or if any track in an ‘and’ (&)
operation cannot be read. lpstrTrackData points to data
from the successfully read tracks (if any). One execute
event (WFS_EXEE_IDC_INVALIDTRACKDATA) is
generated for each specified track which could not be
read successfully. See the form description for the rules
defining how tracks are specified.

 WFS_ERR_IDC_NOMEDIA No card was inserted within the specified time. For
motor driven devices, the read is disabled; i.e., a card
can not be inserted after a timeout.

 WFS_ERR_IDC_INVALIDMEDIA No track found; card may have been inserted or pulled
through the wrong way.

 WFS_ERR_IDC_FORMNOTFOUND The specified form can not be found.
 WFS_ERR_IDC_FORMINVALID The specified form definition is invalid (e.g., syntax

error).
 WFS_ERR_IDC_SECURITYFAIL The security module failed reading the cards security

sign.

 Events The following additional events can be generated by this command:
 Value Meaning
 WFS_EXEE_IDC_INVALIDTRACKDATA One event is generated for each blank track

(no data) or invalid track (either data error

Page 12
CWA 13449-4:1998

reading the track or the data does not
conform to the specified form definition).

 WFS_EXEE_IDC_MEDIAINSERTED This event is generated when a card is
detected in the device, giving early warning
of card entry to an application, allowing it to
remove a user prompt and/or do other
processing while the card is being read.

 WFS_SRVE_IDC_MEDIAREMOVED This event is generated when a card is
removed before completion of a read
operation.

 WFS_EXEE_IDC_INVALIDMEDIA The user is attempting to insert the media in
the wrong orientation. The card has not been
accepted into the device. The device is still
ready to accept a card inserted in the correct
orientation.

 Comments The track data is preceded by the keyword for the track, separated by a ‘:’. The field data is always
preceded by the corresponding keyword, separated by a ‘=’. The fields are separated by 0x00. The
data of the different tracks is separated by an additional 0x00. The end of the buffer is marked by
another additional 0x00 (see example below). Data encoding is defined in Section 6, Form
Definition.

 Example of lpstrTrackData:
TRACK2:ALL=47..\0\0TRACK3:MII=59\0PAN=500..\0\0\0

 4.2 WFS_CMD_IDC_WRITE_TRACK

 Description For motor-driven card readers, the ID card unit checks whether a card has been inserted. If so, the
data is written to the track as described in the form specified by the lpstrFormName parameter,
and the other parameters.

 If no card has been inserted, and for all other categories of devices, the ID card unit waits for the
period of time specified in the WFSExecute call for a card to be either inserted or pulled through.
The next step is writing the data defined by the form and the parameters to the respective track
(see Section 6, Form Definition, for a more detailed description of the forms mechanism).

 This procedure is followed by data verification.

 Input Param LPWFSIDCWRITETRACK lpWriteTrack;

 struct _wfs_idc_write_track
{
LPSTR lpstrFormName;
LPSTR lpstrTrackData;
} WFSIDCWRITETRACK, * LPWFSIDCWRITETRACK;

 lpstrFormName
Points to the name of the form to be used.

 lpstrTrackData
Points to the data to be used in the form.

 Output Param None.

 Error Codes The following additional error codes can be generated by this command:
 Value Meaning
 WFS_ERR_IDC_MEDIAJAM The card is jammed. Operator intervention is required.
 WFS_ERR_IDC_SHUTTERFAIL The open of the shutter failed due to manipulation or

hardware error. Operator intervention is required
 WFS_ERR_IDC_NOMEDIA The card was removed before completion of the write

operation.
 WFS_ERR_IDC_INVALIDDATA An error occurred while writing the track.
 WFS_ERR_IDC_DATASYNTAX The syntax of the data pointed to by lpstrTrackData is

in error, or does not conform to the form definition.

Page 13
CWA 13449-4:1998

 WFS_ERR_IDC_INVALIDMEDIA No track found; card may have been inserted or pulled
through the wrong way.

 WFS_ERR_IDC_FORMNOTFOUND The specified form can not be found.
 WFS_ERR_IDC_FORMINVALID The specified form definition is invalid (e.g., syntax

error).

 Events The following additional events can be generated by this command:
 Value Meaning
 WFS_EXEE_IDC_MEDIAINSERTED This event is generated when a card is

detected in the device, giving early warning
of card entry to an application, allowing it to
remove a user prompt and/or do other
processing while the card is being written.

 WFS_SRVE_IDC_MEDIAREMOVED This event is generated when a card is
removed before completion of a write
operation.

 Comments The field data is always preceded by the corresponding keyword, separated by an ‘=’. Fields are
separated by 0x00. The end of the buffer is marked with an additional 0x00. (See the example
below and Section 6, Form Definition.) This is a fundamental capability of an ID card unit; thus if
a write request is received by a device with no write capability, the
WFS_ERR_UNSUPP_COMMAND error is returned.

 Example of lpstrTrackData:
RETRYCOUNT=3\0DATE=3132\0..\0\0

 4.3 WFS_CMD_IDC_EJECT_CARD

 Description The card is driven to the exit slot from where the user can remove it; applicable only to motor
driven card readers. After successful completion of this command, a service event message is
generated to inform the application when the card is taken. The card remains in position for
withdrawal until either it is taken or the application sends a WFS_CMD_IDC_RETAIN command
to retain the card internally.

 Input Param None.

 Output Param None.

 Error Codes The following additional error codes can be generated by this command:
 Value Meaning
 WFS_ERR_IDC_MEDIAJAM The card is jammed. Operator intervention is required.
 WFS_ERR_IDC_SHUTTERFAIL The open of the shutter failed due to manipulation or

hardware error. Operator intervention is required.
 WFS_ERR_IDC_NOMEDIA No card is present.
 WFS_ERR_IDC_MEDIARETAINED The card has been retained during attempts to eject it.

The device is clear and can be used.

 Events The following additional events can be generated by this command:
 Value Meaning
 WFS_SRVE_IDC_MEDIAREMOVED The card has been taken by the user.

 Comments This is a fundamental capability of an ID card unit; thus if an eject request is received by a device
with no eject capability, the WFS_ERR_UNSUPP_COMMAND error is returned.

Page 14
CWA 13449-4:1998

 4.4 WFS_CMD_IDC_RETAIN_CARD

 Description The card is removed from its present position (card inserted into device, card entering, unknown
position) and stored in the retain bin; applicable to motor-driven card readers only. The ID card
unit sends an event, if the storage capacity of the retain bin is reached. If the storage capacity has
already been reached, and the command cannot be executed, an error is returned and the card
remains in its present position.

 If the execution of this command is performed without errors, the total number of cards retained
includes the current card. If, however, an error occurs during the execution, the total number of
cards retained does not include the current card.

 Input Param None.

 Output Param LPWFSIDCRETAINCARD lpRetainCard ;

 typedef struct _wfs_idc_retain_card
{
USHORT usCount;
WORD fwPosition;
} WFSIDCRETAINCARD, * LPWFSIDCRETAINCARD;

 usCount
Total number of ID cards retained up to and including this operation, since the last
WFS_CMD_IDC_RESET_COUNT command was executed.

 fwPosition
Position of card; only relevant if card could not be retained. Possible positions:

 Value Meaning
 WFS_IDC_MEDIAUNKNOWN The position of the card can not be determined with the

device in its current state.
 WFS_IDC_MEDIAPRESENT The card is present in the reader.
 WFS_IDC_MEDIAENTERING The card is in the entering position (shutter).

 Error Codes The following additional error codes can be generated by this command:
 Value Meaning
 WFS_ERR_IDC_MEDIAJAM The card is jammed. Operator intervention is required.
 WFS_ERR_IDC_NOMEDIA No card has been inserted. The fwPosition parameter

has the value WFS_IDC_MEDIAUNKNOWN.
 WFS_ERR_IDC_RETAINBINFULL The retain bin is full; no more cards can be retained.

The current card is still in the device.

 Events The following additional events can be generated by this command:
 Value Meaning
 WFS_USRE_IDC_RETAINBINTHRESHOLD The retain bin reached a threshold value.

 Comments This is a fundamental capability of an ID card unit; thus if a retain request is received by a device
with no retain capability, the WFS_ERR_UNSUPP_COMMAND error is returned.

 4.5 WFS_CMD_IDC_RESET_COUNT

 Description This function resets the present value for number of cards retained to zero. The function is
possible for motor-driven card readers only.

 The number of cards retained is controlled by the service and can be requested before resetting via
the WFS_INF_IDC_STATUS.

 Input Param None.

 Output Param None.

 Error Codes There are no additional error codes generated by this command.

 Events There are no additional events generated by this command.

Page 15
CWA 13449-4:1998

 Comments This is a fundamental capability of an ID card unit; thus if this request is received by a device with
no retain capability, the WFS_ERR_UNSUPP_COMMAND error is returned.

 4.6 WFS_CMD_IDC_SETKEY

 Description This command is used for setting the DES key that is necessary for operating a CIM86 module.
The command must be executed before the first read command is issued to the card reader.

 Input Param LPWFSIDCSETKEY lpSetkey ;

 typedef struct _wfs_idc_setkey
{
USHORT usKeyLen;
LPBYTE lpbKeyValue;
} WFSIDCSETKEY, *LPWFSIDCSETKEY;

 usKeyLen
 Specifies the length of the following key value.

 lpbKeyValue
 Pointer to a byte array containing the CIM86 DES key. This key is supplied by the vendor of the
CIM86 module.

 Output Param None.

 Error Codes There are no additional error codes generated by this command.

 Events There are no additional events generated by this command.

 Comments None.

 4.7 WFS_CMD_IDC_READ_RAW_DATA

 Description For motor driven card readers, the ID card unit checks whether a card has been inserted. If so, all
specified tracks are read immediately. If reading the chip is requested, the chip will be contacted
and reset and the ATR (Answer To Reset) data will be read. When this command completes the
chip will be in contacted position. This command can also be used for an explicit reset of a
previously contacted chip.

 If no card has been inserted, and for all other categories of card readers, the ID card unit waits for
the period of time specified in the WFSExecute call for a card to be either inserted or pulled
through. The next step is trying to read all tracks specified.

 Magnetic stripe track data is converted from its 5 or 7 bit character form to 8 bit ASCII form. The
parity bit from each 5 or 7 bit magnetic stripe character is discarded. Start and end sentinel
characters are not returned to the application. Field separator characters are returned to the
application, and are also converted to 8 bit ASCII form.

 In addition to that, a security check via a security module (i.e., MM, CIM86) can be requested.

 Input Param LPWORD lpwReadData;

 lpwReadData
Specifies which data should be read as a combination of the following flags:
 Value Meaning
 WFS_IDC_TRACK1 Track 1 of the magnetic stripe will be read.
 WFS_IDC_TRACK2 Track 2 of the magnetic stripe will be read.
 WFS_IDC_TRACK3 Track 3 of the magnetic stripe will be read.
 WFS_IDC_CHIP The chip will be read.
 WFS_IDC_SECURITY A security check will be performed.

 Output Param LPWFSIDCCARDDATA *lppCardData ;

Page 16
CWA 13449-4:1998

 Pointer to a null-terminated array of pointers to card data structures:

 struct _wfs_idc_card_data
{
WORD wDataSource;
WORD wStatus;
ULONG ulDataLength;
LPBYTE lpbData;
} WFSIDCCARDDATA, * LPWFSIDCCARDDATA;

 wDataSource
 Specifies the source of the card data as one of the following flags:
 Value Meaning
 WFS_IDC_TRACK1 lpbData contains data read from track 1.
 WFS_IDC_TRACK2 lpbData contains data read from track 2.
 WFS_IDC_TRACK3 lpbData contains data read from track 3.
 WFS_IDC_CHIP lpbData contains ATR data read from the chip.
 WFS_IDC_SECURITY lpbData contains the value returned by the security module.

 wStatus
 Status of reading the card data. Possible values are:
 Value Meaning
 WFS_IDC_DATAOK The data is ok.
 WFS_IDC_DATAMISSING The track/chip is blank.
 WFS_IDC_DATAINVALID The data contained on the track/chip is invalid.
 WFS_IDC_DATATOOLONG The data contained on the track/chip is too long.
 WFS_IDC_DATATOOSHORT The data contained on the track/chip is too short.
 WFS_IDC_DATASRCNOTSUPP The data source to read from is not supported by the service

provider.
 WFS_IDC_DATASRCMISSING The data source to read from is missing on the card.

 ulDataLength
 Specifies the length of the following field lpbData.

 lpbData
 Points to the data read from the track/chip or the value returned by the security module.

 Error Codes The following additional error codes can be generated by this command:
 Value Meaning
 WFS_ERR_IDC_MEDIAJAM The card is jammed. Operator intervention is required.
 WFS_ERR_IDC_SHUTTERFAIL The open of the shutter failed due to manipulation or

hardware error. Operator intervention is required
 WFS_ERR_IDC_NOMEDIA The card was removed before completion of the read

action.
 WFS_ERR_IDC_INVALIDMEDIA No track or chip found; card may have been inserted or

pulled through the wrong way.

 Events The following additional events can be generated by this command:
 Value Meaning
 WFS_EXEE_IDC_MEDIAINSERTED This event is generated when a card is

detected in the device, giving early warning
of card entry to an application, allowing it to
remove a user prompt and/or do other
processing while the card is being read.

 WFS_SRVE_IDC_MEDIAREMOVED This event is generated when a card is
removed before completion of a read
operation.

 WFS_EXEE_IDC_INVALIDMEDIA The user is attempting to insert the media in
the wrong orientation. The card has not been
accepted into the device. The device is still
ready to accept a card inserted in the correct
orientation.

 Comments None.

Page 17
CWA 13449-4:1998

 4.8 WFS_CMD_IDC_WRITE_RAW_DATA

 Description For motor-driven card readers, the ID card unit checks whether a card has been inserted. If so, the
data is written to the tracks.

 If no card has been inserted, and for all other categories of devices, the ID card unit waits for the
period of time specified in the WFSExecute call for a card to be either inserted or pulled through.
The next step is writing the data to the respective tracks.

 The application must pass the magnetic stripe data in ASCII without any sentinels. The data will
be converted by the service provider.

 This procedure is followed by data verification.

 Input Param LPWFSIDCCARDDATA * lppCardData;
Pointer to a null-terminated array of pointers to card data structures:

 struct _wfs_idc_card_data
{
WORD wDataSource;
WORD wStatus;
ULONG ulDataLength;
LPBYTE lpbData;
} WFSIDCCARDDATA, * LPWFSIDCCARDDATA;

 wDataSource
 Specifies the source of the card data as one of the following flags:
 Value Meaning
 WFS_IDC_TRACK1 lpbData contains data to be written to track 1.
 WFS_IDC_TRACK2 lpbData contains data to be written to track 2.
 WFS_IDC_TRACK3 lpbData contains data to be written to track 3.

 wStatus
This parameter is ignored by this command.

 ulDataLength
 Specifies the length of the following field lpbData.

 lpbData
 Points to the data to be written to the track.

 Output Param None.

 Error Codes The following additional error codes can be generated by this command:
 Value Meaning
 WFS_ERR_IDC_MEDIAJAM The card is jammed. Operator intervention is required.
 WFS_ERR_IDC_SHUTTERFAIL The open of the shutter failed due to manipulation or

hardware error. Operator intervention is required
 WFS_ERR_IDC_NOMEDIA The card was removed before completion of the write

action.
 WFS_ERR_IDC_INVALIDMEDIA No track found; card may have been inserted or pulled

through the wrong way.

 Events The following additional events can be generated by this command:
 Value Meaning
 WFS_EXEE_IDC_MEDIAINSERTED This event is generated when a card is

detected in the device, giving early warning
of card entry to an application, allowing it to
remove a user prompt and/or do other
processing while the card is being written.

 WFS_SRVE_IDC_MEDIAREMOVED This event is generated when a card is
removed before completion of a write
operation.

Page 18
CWA 13449-4:1998

 WFS_EXEE_IDC_INVALIDMEDIA The user is attempting to insert the media in
the wrong orientation. The card has not been
accepted into the device. The device is still
ready to accept a card inserted in the correct
orientation.

 Comments This is a fundamental capability of an ID card unit; thus if a write request is received by a device
with no write capability, the WFS_ERR_UNSUPP_COMMAND error is returned.

 4.9 WFS_CMD_IDC_CHIP_IO

 Description This command is used to communicate with the chip. Transparent data is sent from the application
to the chip and the response of the chip is returned transparently to the application.

 The ATR of the chip must be obtained before issuing this command by issuing a Read Command.

 Input Param LPWFSIDCCHIPIO lpChipIoIn;

 struct _wfs_idc_chip_io
{
WORD wChipProtocol;
ULONG ulChipDataLength;
LPBYTE lpbChipData;
} WFSIDCCHIPIO, * LPWFSIDCCHIPIO;

 wChipProtocol
 Identifies the protocol that is used to communicate with the chip. Possible values are those
described in WFS_INF_IDC_CAPABILITIES.

 ulChipDataLength
 Specifies the length of the following field lpbChipData.

 lpbChipData
 Points to the data sent to the chip.

 Output Param LPWFSIDCCHIPIO lpChipIoOut;

 struct _wfs_idc_chip_io
{
WORD wChipProtocol;
ULONG ulChipDataLength;
LPBYTE lpbChipData;
} WFSIDCCHIPIO, * LPWFSIDCCHIPIO;

 wChipProtocol
 Identifies the protocol that is used to communicate with the chip. This field contains the same
value as the corresponding field in the input structure.

 ulChipDataLength
 Specifies the length of the following field lpbChipData.

 lpbChipData
 Points to the data responded from the chip.

 Error Codes The following additional error codes can be generated by this command:
 Value Meaning
 WFS_ERR_IDC_MEDIAJAM The card is jammed. Operator intervention is

required.
 WFS_ERR_IDC_NOMEDIA There is no card inside the device.
 WFS_ERR_IDC_INVALIDMEDIA No chip found; card may have been inserted or

pulled through the wrong way.
 WFS_ERR_IDC_INVALIDDATA An error occurred while communicating with the

chip.
 WFS_ERR_IDC_PROTOCOLNOTSUPP The protocol used was not supported by the

service provider.

Page 19
CWA 13449-4:1998

 WFS_ERR_IDC_ATRNOTOBTAINED The ATR was not obtained before by issuing a
Read Command.

 Events The following additional events can be generated by this command:
 Value Meaning
 WFS_SRVE_IDC_MEDIAREMOVED This event is generated when a card is

removed before completion of a write
operation.

 Comments None.

 5. Events

 5.1 WFS_EXEE_IDC_INVALIDTRACKDATA

 Description This execute event specifies that a track contained invalid or no data.

 Event Param LPWFSIDCTRACKEVENT lpTrackEvent ;

 struct _wfs_idc_track_event
{
WORD fwStatus;
LPSTR lpstrTrack;
LPSTR lpstrData;
} WFSIDCTRACKEVENT, * LPWFSIDCTRACKEVENT;

 fwStatus
Status of reading the track. Possible values are :

 Value Meaning
 WFS_IDC_DATAMISSING The track is blank.
 WFS_IDC_DATAINVALID The data contained on the track is invalid.
 WFS_IDC_DATATOOLONG The data contained on the track is too long.
 WFS_IDC_DATATOOSHORT The data contained on the track is too short.

 lpstrTrack
Points to the keyword of the track on which the error occurred.

 lpstrData
Points to the data that could be read (that may be only a fragment of the track), terminated by a
null character. This data is simply a stream of characters; it does not contain keywords.

 5.2 WFS_EXEE_IDC_MEDIAINSERTED

 Description This execute event specifies that a card was inserted into the device.

 Event Param None.

 5.3 WFS_SRVE_IDC_MEDIAREMOVED

 Description This service event specifies that the inserted card was manually removed by the user during the
processing of a read/write command or after an eject operation.

 Event Param None.

Page 20
CWA 13449-4:1998

 5.4 WFS_EXEE_IDC_INVALIDMEDIA

 Description This execute event specifies that the media the user is attempting to insert is not a valid card or it
is a card but it is in the wrong orientation.

 Event Param None.

 5.5 WFS_SRVE_IDC_CARDACTION

 Description This service event specifies that a card has been retained or ejected by either the automatic power
on or power off action of the device.

 Event Param LPWFSIDCCARDACT lpCardAct;

 typedef struct _wfs_idc_card_act
{
WORD wAction;
WORD wPosition;
} WFSIDCCARDACT, * LPWFSIDCCARDACT;

 wAction
Specifies which action has been performed with the card. Possible values are :

 Value Meaning
 WFS_IDC_CARDRETAINED The card has been retained.
 WFS_IDC_CARDEJECTED The card has been ejected.
 WFS_IDC_CARDREADPOSITION The card has been moved to the read

position

 wPosition
Position of card before being retained or ejected. Possible values are :

 Value Meaning
 WFS_IDC_MEDIAUNKNOWN The position of the card can not be determined.
 WFS_IDC_MEDIAPRESENT The card was present in the reader.
 WFS_IDC_MEDIAENTERING The card was entering the reader.

 5.6 WFS_USRE_IDC_RETAINBINTHRESHOLD

 Description This user event specifies that the retain bin holding the retained cards is near full (according to the
threshold value in the registry), requiring operator intervention soon.

 Event Param LPWORD lpfwRetainBin;

 lpfwRetainBin
Specifies the state of the ID card unit retain bin as one of the following flags:

 Value Meaning
 WFS_IDC_RETAINBINOK The retain bin of the ID card unit was emptied.
 WFS_IDC_RETAINBINFULL The retain bin of the ID card unit is full.
 WFS_IDC_RETAINBINHIGH The retain bin of the ID card unit is nearly full.

 6. Form Description

 This section describes the forms mechanism used to define the tracks to be read or written. Forms are contained in a
single file, with one section for each defined form. The name of each section is the form name parameter in the
WFS_CMD_IDC_READ_TRACK and WFS_CMD_IDC_WRITE_TRACK commands.

 The currently active ID card unit (IDCU) form file is configured through the following key

 WOSA/XFS_ROOT
 FORMS

Page 21
CWA 13449-4:1998

 IDCU
 formfile=<path><filename>

 The read form defines which tracks should be read in the WFS_CMD_IDC_READ_TRACK command and what the
response should be to a read failure. The read form can also be used to define logical track data, i.e. fields like
“account number,” “issuer identifier,” and their position within the physical track data. For example, the output
parameter of the WFS_CMD_IDC_READ_TRACK command with input parameter lpstrFormName =
READTRACK3GERMAN could look like (see example 1 below):

"TRACK3:MII=59\0ISSUERID=50050500\0ACCOUNT=1234567890\0LUHNT3=1\0\0\0"

 The write form defines which track is to be written, the logical track data that is handed over in the
WFS_CMD_IDC_WRITE_TRACK command, and how the write data is to be converted to the physical data to be
written.

 Reserved Keywords/Operands Meaning

 [] form name delimiters

 TRACK1 keyword to identify track 1

 TRACK2 keyword to identify track 2

 TRACK3 keyword to identify track 3

 FIELDSEPT1 value of field separator of track 1

 FIELDSEPT2 value of field separator of track 2

 FIELDSEPT3 value of field separator of track 3

 READ description of read action; the TRACKn keywords are processed left to
right

 WRITE description of write action

 ALL read or write the complete track

 SECURE do the security check via the security module (CIM86 or MM)

 & read/write all tracks specified, abort reading on read failure

 | read/write at least one of the tracks specified, continue reading on read
failure

 FIELDSEPPOSn position of the nth occurrence of field separator on track

 , separator in a list of logical fields

 DEFAULT string for default substitution of track data to be written, that is not
defined explicitly by the form fields. DEFAULT also allows an
application to input fewer fields than those defined by the form.

 ? Reserved value for DEFAULT keyword: substitute track data to write
with its value read before.

 ENDTRACK is the reference to the end track position. It is used to identify fields
positioned after the last field separator

 Notes

 The & and | operands may be combined in a single READ statement; for example:
� read track3 or track2, trying track3 first:

READ= TRACK3 | TRACK2
� read track 3 and at least one of track2 or track1:

READ= TRACK3 & (TRACK2 | TRACK1)
or:

READ= TRACK2 | TRACK1 & TRACK3

Use of field separators in track layouts is to replace optional fields and terminate variable length fields.

Write forms are designed for updating specific fields without altering the position of the field separators.

Page 22
CWA 13449-4:1998

The application may alter the position of the field separators by rewriting the card tracks (ALL option or
DEFAULT option with default track data).

Example 1 Reading tracks:

[READTRACK3GERMAN]
FIELDSEPT1= = /* field separator of track 1 */
FIELDSEPT2= = /* field separator of track 2 */
FIELDSEPT3= = /* field separator of track 3 */
READ= TRACK3 & TRACK1 & TRACK2 /* all tracks must be read */
TRACK3= MII, ISSUERID, ACCOUNT, LUHNT3, SECURE /* read logical fields

as defined below; also
check the security */

MII= FIELDSEPPOS1 + 1, FIELDSEPPOS1 + 2
ISSUERID= FIELDSEPPOS1 + 3, FIELDSEPPOS1 + 10
ACCOUNT= FIELDSEPPOS1 + 11, FIELDSEPPOS2 - 2
LUHNT3= FIELDSEPPOS2 - 1, FIELDSEPPOS2 - 1
TRACK2= ALL /* return track2 complete,

 don't return logical fields */
TRACK1= ALL /* return track1 complete,

 don't return logical fields */

All tracks must be read (‘READ’), that is, the read fails if an error occurs on reading any one of
the tracks (the ‘&’ operand). The field “major industry identifier” (‘MII’) is located after the first
field separator (‘FIELDSEPPOS1’) and its length is two bytes. The “issuer identifier” field
(‘ISSUERID’) is located after the MII field, with a length of eight bytes. The next field, “account
number” (‘ACCOUNT’) is variable length; it ends before the luhn digit field (‘LUHNT3’) that is
the last digit in front of the second field separator (‘FIELDSEPPOS2’).

Example 2 Write a track:

[WRITETRACK3]
FIELDSEPT3= =
DEFAULT= ? /* fields not specified in the write form are to be left

unchanged, i.e., read and the same data written back to
them */

WRITE= TRACK3
TRACK3= RETRYCOUNT, DATE
RETRYCOUNT= FIELDSEPPOS2, + 22, FIELDSEPPOS2 + 22
DATE= FIELDSEPPOS5 + 1, FIELDSEPPOS5 + 4

Track 3 is to be written. In the example only the retry counter and the date of the last transaction
are updated, the other fields are unchanged. (If the field ALL is defined, the data passed in the
WFS_CMD_IDC_WRITE_TRACK command is written to the physical track without formatting.)

7. C-Header file

/**
* *
* xfsidc.h XFS - Identification card reader/writer (IDC) definitions *
* *
* Version 2.00 (11/11/96) *
* *
**/

#ifndef __INC_XFSIDC__H
#define __INC_XFSIDC__H

#ifdef __cplusplus
extern "C" {
#endif

#include <xfsapi.h>

Page 23
CWA 13449-4:1998

/* be aware of alignment */
#pragma pack(push,1)

/* values of WFSIDCCAPS.wClass */

#define WFS_SERVICE_CLASS_IDC (2)
#define WFS_SERVICE_CLASS_NAME_IDC "IDC"
#define WFS_SERVICE_CLASS_VERSION_IDC 0x0002

#define IDC_SERVICE_OFFSET (WFS_SERVICE_CLASS_IDC * 100)

/* IDC Info Commands */

#define WFS_INF_IDC_STATUS (IDC_SERVICE_OFFSET + 1)
#define WFS_INF_IDC_CAPABILITIES (IDC_SERVICE_OFFSET + 2)
#define WFS_INF_IDC_FORM_LIST (IDC_SERVICE_OFFSET + 3)
#define WFS_INF_IDC_QUERY_FORM (IDC_SERVICE_OFFSET + 4)

/* IDC Execute Commands */

#define WFS_CMD_IDC_READ_TRACK (IDC_SERVICE_OFFSET + 1)
#define WFS_CMD_IDC_WRITE_TRACK (IDC_SERVICE_OFFSET + 2)
#define WFS_CMD_IDC_EJECT_CARD (IDC_SERVICE_OFFSET + 3)
#define WFS_CMD_IDC_RETAIN_CARD (IDC_SERVICE_OFFSET + 4)
#define WFS_CMD_IDC_RESET_COUNT (IDC_SERVICE_OFFSET + 5)
#define WFS_CMD_IDC_SETKEY (IDC_SERVICE_OFFSET + 6)
#define WFS_CMD_IDC_READ_RAW_DATA (IDC_SERVICE_OFFSET + 7)
#define WFS_CMD_IDC_WRITE_RAW_DATA (IDC_SERVICE_OFFSET + 8)
#define WFS_CMD_IDC_CHIP_IO (IDC_SERVICE_OFFSET + 9)

/* IDC Messages */

#define WFS_EXEE_IDC_INVALIDTRACKDATA (IDC_SERVICE_OFFSET + 1)
#define WFS_EXEE_IDC_MEDIAINSERTED (IDC_SERVICE_OFFSET + 3)
#define WFS_SRVE_IDC_MEDIAREMOVED (IDC_SERVICE_OFFSET + 4)
#define WFS_SRVE_IDC_CARDACTION (IDC_SERVICE_OFFSET + 5)
#define WFS_USRE_IDC_RETAINBINTHRESHOLD (IDC_SERVICE_OFFSET + 6)
#define WFS_EXEE_IDC_INVALIDMEDIA (IDC_SERVICE_OFFSET + 7)

/* values of WFSIDCSTATUS.fwDevice */
#define WFS_IDC_DEVONLINE WFS_STAT_DEVONLINE
#define WFS_IDC_DEVOFFLINE WFS_STAT_DEVOFFLINE
#define WFS_IDC_DEVPOWEROFF WFS_STAT_DEVPOWEROFF
#define WFS_IDC_DEVBUSY WFS_STAT_DEVBUSY
#define WFS_IDC_DEVNODEVICE WFS_STAT_DEVNODEVICE
#define WFS_IDC_DEVHWERROR WFS_STAT_DEVHWERROR
#define WFS_IDC_DEVUSERERROR WFS_STAT_DEVUSERERROR

/* values of WFSIDCSTATUS.fwMedia, WFSIDCRETAINCARD.fwPosition, */
/* WFSIDCCARDACT.fwPosition */

#define WFS_IDC_MEDIAPRESENT (1)
#define WFS_IDC_MEDIANOTPRESENT (2)
#define WFS_IDC_MEDIAJAMMED (3)
#define WFS_IDC_MEDIANOTSUPP (4)
#define WFS_IDC_MEDIAUNKNOWN (5)
#define WFS_IDC_MEDIAENTERING (6)

/* values of WFSIDCSTATUS.fwRetainBin */

#define WFS_IDC_RETAINBINOK (1)
#define WFS_IDC_RETAINNOTSUPP (2)
#define WFS_IDC_RETAINBINFULL (3)
#define WFS_IDC_RETAINBINHIGH (4)

/* values of WFSIDCSTATUS.fwSecurity */

#define WFS_IDC_SECNOTSUPP (1)
#define WFS_IDC_SECNOTREADY (2)
#define WFS_IDC_SECOPEN (3)

Page 24
CWA 13449-4:1998

/* values of WFSIDCCAPS.fwPowerOnOption, WFSIDCCAPS.fwPowerOffOption, */

#define WFS_IDC_NOACTION (1)
#define WFS_IDC_EJECT (2)
#define WFS_IDC_RETAIN (3)
#define WFS_IDC_EJECTTHENRETAIN (4)
#define WFS_IDC_READPOSITION (5)

/* values of WFSIDCCAPS.fwType */

#define WFS_IDC_TYPEMOTOR (1)
#define WFS_IDC_TYPESWIPE (2)
#define WFS_IDC_TYPEDIP (3)
#define WFS_IDC_TYPECONTACTLESS (4)

/* values of WFSIDCCAPS.fwReadTracks, WFSIDCCAPS.fwWriteTracks,
 WFSIDCCARDDATA.wDataSource */

#define WFS_IDC_NOTSUPP 0x0000
#define WFS_IDC_TRACK1 0x0001
#define WFS_IDC_TRACK2 0x0002
#define WFS_IDC_TRACK3 0x0004

/* further values of WFSIDCCARDDATA.wDataSource */

#define WFS_IDC_CHIP 0x0008
#define WFS_IDC_SECURITY 0x0010

/* values of WFSIDCCAPS.fwChipProtocols */

#define WFS_IDC_CHIPT0 0x0001
#define WFS_IDC_CHIPT1 0x0002
#define WFS_IDC_CHIPT2 0x0004
#define WFS_IDC_CHIPT3 0x0008
#define WFS_IDC_CHIPT4 0x0010
#define WFS_IDC_CHIPT5 0x0020
#define WFS_IDC_CHIPT6 0x0040
#define WFS_IDC_CHIPT7 0x0080
#define WFS_IDC_CHIPT8 0x0100
#define WFS_IDC_CHIPT9 0x0200
#define WFS_IDC_CHIPT10 0x0400
#define WFS_IDC_CHIPT11 0x0800
#define WFS_IDC_CHIPT12 0x1000
#define WFS_IDC_CHIPT13 0x2000
#define WFS_IDC_CHIPT14 0x4000
#define WFS_IDC_CHIPT15 0x8000

/* values of WFSIDCCAPS.fwSecType */

#define WFS_IDC_SECNOTSUPP (1)
#define WFS_IDC_SECMMBOX (2)
#define WFS_IDC_SECCIM86 (3)

/* values of WFSIDCFORM.fwAction */

#define WFS_IDC_ACTIONREAD (1)
#define WFS_IDC_ACTIONWRITE (2)

/* values of WFSIDCTRACKEVENT.fwStatus, WFSIDCCARDDATA.wStatus */

#define WFS_IDC_DATAOK (0)
#define WFS_IDC_DATAMISSING (1)
#define WFS_IDC_DATAINVALID (2)
#define WFS_IDC_DATATOOLONG (3)
#define WFS_IDC_DATATOOSHORT (4)
#define WFS_IDC_DATASRCNOTSUPP (5)
#define WFS_IDC_DATASRCMISSING (6)

/* values WFSIDCCARDACT.wAction */

#define WFS_IDC_CARDRETAINED (1)
#define WFS_IDC_CARDEJECTED (2)
#define WFS_IDC_CARDREADPOSITION (3)

Page 25
CWA 13449-4:1998

/* XFS IDC Errors */

#define WFS_ERR_IDC_MEDIAJAM (-(IDC_SERVICE_OFFSET + 0))
#define WFS_ERR_IDC_NOMEDIA (-(IDC_SERVICE_OFFSET + 1))
#define WFS_ERR_IDC_MEDIARETAINED (-(IDC_SERVICE_OFFSET + 2))
#define WFS_ERR_IDC_RETAINBINFULL (-(IDC_SERVICE_OFFSET + 3))
#define WFS_ERR_IDC_INVALIDDATA (-(IDC_SERVICE_OFFSET + 4))
#define WFS_ERR_IDC_INVALIDMEDIA (-(IDC_SERVICE_OFFSET + 5))
#define WFS_ERR_IDC_FORMNOTFOUND (-(IDC_SERVICE_OFFSET + 6))
#define WFS_ERR_IDC_FORMINVALID (-(IDC_SERVICE_OFFSET + 7))
#define WFS_ERR_IDC_DATASYNTAX (-(IDC_SERVICE_OFFSET + 8))
#define WFS_ERR_IDC_SHUTTERFAIL (-(IDC_SERVICE_OFFSET + 9))
#define WFS_ERR_IDC_SECURITYFAIL (-(IDC_SERVICE_OFFSET + 10))
#define WFS_ERR_IDC_PROTOCOLNOTSUPP (-(IDC_SERVICE_OFFSET + 11))
#define WFS_ERR_IDC_ATRNOTOBTAINED (-(IDC_SERVICE_OFFSET + 12))

/*===*/
/* IDC Info Command Structures and variables */
/*===*/

typedef struct _wfs_idc_status
{
 WORD fwDevice;
 WORD fwMedia;
 WORD fwRetainBin;
 WORD fwSecurity;
 USHORT usCards;
 LPSTR lpszExtra;
} WFSIDCSTATUS, * LPWFSIDCSTATUS;

typedef struct _wfs_idc_caps
{
 WORD wClass;
 WORD fwType;
 BOOL bCompound;
 WORD fwReadTracks;
 WORD fwWriteTracks;
 WORD fwChipProtocols;
 USHORT usCards;
 WORD fwSecType;
 WORD fwPowerOnOption;
 WORD fwPowerOffOption;
 LPSTR lpszExtra;
} WFSIDCCAPS, * LPWFSIDCCAPS;

typedef struct _wfs_idc_form
{
 LPSTR lpszFormName;
 CHAR cFieldSeparatorTrack1;
 CHAR cFieldSeparatorTrack2;
 CHAR cFieldSeparatorTrack3;
 WORD fwAction;
 LPSTR lpszTracks;
 BOOL bSecure;
 LPSTR lpszTrack1Fields;
 LPSTR lpszTrack2Fields;
 LPSTR lpszTrack3Fields;
} WFSIDCFORM, * LPWFSIDCFORM;

/*===*/
/* IDC Execute Command Structures */
/*===*/

typedef struct _wfs_idc_write_track
{
 LPSTR lpstrFormName;
 LPSTR lpstrTrackData;
} WFSIDCWRITETRACK, * LPWFSIDCWRITETRACK;

Page 26
CWA 13449-4:1998

typedef struct _wfs_idc_retain_card
{
 USHORT usCount;
 WORD fwPosition;
} WFSIDCRETAINCARD, * LPWFSIDCRETAINCARD;

typedef struct _wfs_idc_setkey
{
 USHORT usKeyLen;
 LPBYTE lpbKeyValue;
} WFSIDCSETKEY, * LPWFSIDCSETKEY;

typedef struct _wfs_idc_card_data
{
 WORD wDataSource;
 WORD wStatus;
 ULONG ulDataLength;
 LPBYTE lpbData;
} WFSIDCCARDDATA, * LPWFSIDCCARDDATA;

typedef struct _wfs_idc_chip_io
{
 WORD wChipProtocol;
 ULONG ulChipDataLength;
 LPBYTE lpbChipData;
} WFSIDCCHIPIO, * LPWFSIDCCHIPIO;

/*===*/
/* IDC Message Structures */
/*===*/

typedef struct _wfs_idc_track_event
{
 WORD fwStatus;
 LPSTR lpstrTrack;
 LPSTR lpstrData;
} WFSIDCTRACKEVENT, * LPWFSIDCTRACKEVENT;

typedef struct _wfs_idc_card_act
{
 WORD wAction;
 WORD wPosition;
} WFSIDCCARDACT, * LPWFSIDCCARDACT;

/* restore alignment */
#pragma pack(pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

#endif /* __INC_XFSIDC__H */

